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Vortex-induced vibration of two side-by-side elastic beams in a cross #ow is numerically
studied. The two beams are identical and "xed at both ends. In the numerical approach, the
Euler}Bernoulli beam theory is used to model the beam vibration, and the laminar
Navier}Stokes equations are solved to give the #ow "eld. The #ow equations are resolved
using a "nite element method and the #ow-induced forces are calculated at every time step in
order to correctly re#ect the #uid}beam interaction. The beam response is calculated using
the modal analysis method. Free vibrations of the two beams with three pitch ratios,
¹/D"1)13, 1)7 and 3)0, where ¹ is the gap between the centers of the two beams and D is
the beam diameter, are simulated at Re"800. Results obtained are compared with
experimental measurements and other numerical results obtained assuming
a two-degree-of-freedom (2-d.o.f.) model. The agreement is good in general. Correlation
analysis is carried out, showing that the phase relation is di!erent for di!erent ¹/D. The
short-time Fourier transform (STFT) method is used to carry out the spectral analysis, along
with the conventional auto-regressive moving averaging (ARMA) method for comparison.
The STFT analysis shows that the time evolution of #uid force and beam vibration for
¹/D"1)13 and 3)0 are stationary. For these ¹/D ratios, the STFT results are consistent
with the ARMA results, but give a clearer picture of the higher order harmonics. For
¹/D"1)7, the time evolution is non-stationary. The STFT analysis shows that there are
three types of frequency spectrum for the #uid force, with one, two, and three dominant
frequencies respectively. The spectra intermittently change in a random way during the
evolution. The ARMA results, though consistent with previous experiments, can only reveal
a particular feature of the three di!erent types of spectrum. This suggests that the STFT
method is more appropriate to analyze the spectra of non-stationary time series in the study
of #ow-induced vibrations.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Flow-induced vibration of two side-by-side beams is the simplest case of #ow-induced
vibration of beam arrays. In addition to #uid}structure interaction, the interaction between
neighboring beams makes the #ow "eld, and thus the #uid force and beam vibration, more
complex than that of a single beam.

Two beams in a cross #ow can be arranged in a side-by-side, tandem, and/or a staggered
con"guration, as illustrated in Figure 1. In the present study, the side-by-side arrangement
of two cylindrical beams is considered. For such an arrangement, the pitch ratio ¹/D, where
¹ is the gap between the centers of two beams and D is the beam diameter, is an important
parameter. Zdravkovich [1, 2] has given excellent reviews of #ow interference between two
stationary beams for di!erent values of ¹/D. When ¹/D'4 , the interference is negligible
and the wake of each beam is almost the same as the wake of a single beam. As ¹/D is
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Figure 1. Illustration of various arrangements of two beams in a cross #ow: (a) side-by-side; (b) tandem and
(c) staggered.
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reduced to the range, 2)3(¹/D(4, two coupled vortex streets are observed. The two
vortex streets have the same shedding frequency but are coupled in an out-of-phase mode.
A further reduction of ¹/D to between 1)1 and 2)3 gives rise to a biased #ow pattern.
Bearman and Wadcock [3] observed an asymmetric vortex street for this regime. The #ow
is bistable, intermittently changing over from one side to the other. Williamson [4]
summarized the experimental data on the Strouhal number prior to his experiment, thus
showing that three Strouhal numbers, around 0)1, 0)2 and 0)3, are associated with the two
wakes. However, Kim and Durbin [5] reported only two Strouhal numbers for this regime.
When ¹/D is reduced to below 1)1, the two beams are strongly coupled and behave like
a single blu! body. The observed asymmetry could be attributed to a near-wake
phenomenon, rather than being related to the position of boundary layer separation.

When the beams are free to vibrate, the #ow "eld becomes more complex because of
#uid}structure interaction due to beam vibration [6, 7]. For two elastically supported rigid
beams, the interference behavior can be classi"ed into four regimes: negligible interference
at ¹/D'4, coupled vortex streets at 2)2(¹/D(4, biased #ow pattern at
1)2(¹/D(2)2, and single vortex street at ¹/D(1)2. The ¹/D values separating di!erent
regimes are a!ected by system parameters such as the mass ratio, #uid damping, incoming
#ow, etc. Zhou et al. [8] experimentally investigated the interference behavior of two
"xed}"xed elastic beams in a cross #ow. Three pitch ratios, ¹/D"1)13, 1)7, and 3)0, were
studied. It is shown that beam vibrations are essentially out of phase at ¹/D"1)7, while in
phase at ¹/D"1)13. A signi"cant "nding is that synchronization occurs at several reduced
velocities, corresponding to the "rst several natural frequencies of the system.
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Numerical simulations of the #ow-induced vibration of a relatively simple beam array are
few compared with experimental measurements. Chang and Song [9] studied the
interaction of vortex shedding of two beams at Re"100, when ¹/D"1)7 and 3)0. For
¹/D"3)0, there are two types of vortex shedding, one is symmetric and the other is
antisymmetric. The time series of the lift and drag coe$cients are out of phase in the former
case, but in phase in the latter case. The vortex shedding between these two types changes
with time. For ¹/D"1)7, there is only one combined wake and the vortex shedding is
asymmetric with a gap #ow. Slaouti and Stansby [10] later investigated the #ow around
two stationary beams at Re"200 for ¹/D"1)1, 1)5, and 3)0 using the random-vortex
method, while Ng et al. [11] studied vortex interactions in the bistable #ow regime at
¹/D"1)75. Unfortunately, Ng et al. [11] did not specify the Re of their calculations. On the
other hand, Ichioka et al. [12] investigated the #uid}elastic vibration of two rigid beams at
Re"1000 for ¹/D"1)5. The two beams vibrate in a reverse phase mode. There is only one
dominant frequency due to synchronization with the natural frequency of the beam.
However, there is another frequency peak associated with each beam. In all these
calculations, the beams are either stationary or the structural vibration is calculated
assuming a two-degree-of-freedom (2-d.o.f.) model. Thus, both the #ow "eld and the beam
dynamics are modelled by invoking two-dimensional (2-D) assumptions. Seldom the
Euler}Bernoulli beam theory is invoked to perform a 3-D calculation of the structural
dynamics in a beam array. Consequently, vital information on the mode shape, natural
frequencies of the di!erent modes and their associated damping characteristics are not
available.

Numerical simulation has not been performed so far for a pair of elastic beams in a cross
#ow, where the #ow and the structures are assumed to be fully 3-D. As a "rst attempt, the
#ow around long slender beams could be assumed to be 2-D, however, the beam vibration
can no longer be modelled by a spring}damper}mass system. Instead, the Euler}Bernoulli
beam theory is used to resolve the 3-D vibration characteristics of the beams. This paper
attempts a numerical simulation of the two-beam vibration problem at Re"800. The
calculated results are compared with experimental measurement [8]. A numerical approach
developed by Wang et al. [13] for a single beam is extended to simulate this two-beam case.
The behavior at ¹/D"1)13, 1)7, and 3)0 are calculated and compared with experimental
measurements reported by Zhou et al. [8] and the numerical calculations of Liu et al. [14]
assuming a 2-d.o.f. model for the beam dynamics. In addition to the use of an
auto-regressive moving averaging (ARMA) technique [13}15] to analyze the stationary
part of the time series, the short-time Fourier transform (STFT) method [16] is employed to
analyze the time series in order to detect any non-stationary behavior.

2. THE NUMERICAL APPROACH

For #ow-induced vibration problem with a single structure, four basic issues should be
considered in any numerical simulation: modelling of the #ow "eld, modelling of the
structural vibration, modelling the #uid}structure interaction, and data analysis. In the case
of multiple beams in a cross #ow; an added complication is introduced by the beam}beam
interaction. However, this particular aspect could be accounted for within the issue on
modelling of #uid}structure interaction. Consequently, no additional issues are required for
the simulation of free vibrations of multiple beams. These four issues for a single beam have
been addressed and a numerical approach has been developed to treat a 3-D beam in a 2-D
mean #ow [13]. In the present study, the 2-D #ow/3-D structure approach is extended to
investigate vortex-induced vibration of two side-by-side beams. For the sake of
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completeness, a brief description of each of these issues is given below. The interested reader
is referred to references [13, 14, 17] for further details of the individual issues.

2.1. THE FLUID FLOW MODEL

A uniform cross #ow of an incompressible, viscous Newtonian #uid around two elastic
slender beams is considered. The upstream #ow and the wake are assumed to be laminar
and the beams are "xed at both ends. A justi"cation for the laminar wake assumption in the
Re range, 400(Re(10000, has been given in So et al. [17] and Wang et al. [13]. The
governing laminar Navier}Stokes equations are

�u

�t
#(u ) � )u"!�p#

1

Re
��u, � ) u"0, (1, 2)

where u is the dimensionless velocity vector normalized by the free-stream velocity ;
�
,
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/D is the dimensionless time, p is the dimensionless pressure normalized by �;�

�
,
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�
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the #uid kinematic viscosity. The boundary and initial conditions can be speci"ed as,
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where S is the boundary of the domain < occupied by the #uid.
The operator-splitting method [18] is used to solve the Navier}Stokes equations. The

readers are referred to reference [18] for the detail of this method. Once the velocity and the
pressure "eld has been obtained, the induced force on the structure is calculated using the
following formula:

F (z, t)"� �!pn#

1

Re
(�u#�u� ) ) n��zds, (4)

where the integration is performed around the circumference of the beam with arc length
s at each spanwise location z, �z is the elemental length along the span and n is the outward
unit vector normal to the beam. The force vector, F"�F

�
,F

�
�, consists of two components,

the dimensionless unsteady drag (or streamwise) and lift (or transverse) forces respectively.
Thus, the drag- and lift-force coe$cients are de"ned as C

�
"2F

�
/(�;�

�
�z�D) and

C
�
"2F

�
/(�;�

�
�z�D) respectively. All the calculated results are in the form of time series.

From this point on, an overbar is used to denote the time average and a prime to designate
the root mean square (r.m.s.) value of the signal. For example, the mean and r.m.s. values of
C

�
are CM

�
and C	

�
, respectively.

2.2. THE STRUCTURAL DYNAMICS MODEL

Each beam in the array is modelled by the Euler}Bernoulli beam theory and the modal
analysis method is used to calculate the response of the beams in the present analysis [19].

The dynamic equation, made dimensionless by using the same parameters as those
adopted for the Navier}Stokes equations, is expressed as
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ratio, m
�
is the mass per unit length of the beam and �

�
is the #uid density. F

�
is the mth

mode generalized dimensionless force given by

F
�
(t)"�=�

(z)F (z, t) dz, m"1, 2,2, (6)

where=
�
(z) is the mth normal mode of the undamped beam associated with the natural

frequency f*
��
,

The present beammodel predicts both the transverse and the streamwise vibration of the
beam along the span. In this sense, it accounts for the 3-D structural dynamics. The
unsteady force vector, F"�F

�
,F

�
�, is generally a function of time and the spanwise

co-ordinate and, in principle, should be calculated based on a 3-D #owmodel. However, the
#ow "eld can be assumed 2-D for a long slender beam, that is, F is independent of the
spanwise co-ordinate z. In such a way, the #uid forces at a cross-section of the beam can be
calculated using the 2-D #ow "eld enclosing that cross-section. The generalized force is thus
expressed as

F
�
(t)"�=�

(z)F (t) dz, m"1, 2,2 . (7)

A fourth order Runge}Kutta method is used to solve equation (5). Once �
�
(t) and ��

�
(t) are

evaluated, the dimensionless displacement and velocity of the beam are calculated using the
following equations:
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2.3. FLUID}BEAM AND BEAM}BEAM INTERACTION

From a computational point of view, #ow-induced vibration is a moving boundary
problem because the beam is free to move under the action of the #ow-induced unsteady
forces. The boundary of the computational domain changes with beam motion, and the
no-slip boundary condition is applied on the surface of the beam. The mesh is deformed
accordingly also. In order not to allow the mesh to deform to the extent that the boundary
layer on the beam surface cannot be resolved properly, a Laplacian equation of
displacement is solved to minimize the local mesh deformation. The Laplacian equation is
expressed as

���"0, (9)

and the boundary conditions given by �"0 at the outer boundary and �"w at the
boundary of the beam, where � is the deformation vector of the mesh nodes. The mesh is
then remapped according to the deformation. In order to correctly account for the
#uid}structure interaction, iteration is carried out within each time step until a stable status
is reached. The readers are referred to So et al. [17] and Jadic et al. [20] for a detailed
description of the process for a single beam and for a streamline body respectively.

2.4. DATA ANALYSIS

The time-marching approach gives the evolution of #uid force, beam vibration, #ow
velocity pro"le, etc. In order to understand the #ow-induced vibration behavior, these data
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sets have to be analyzed to give the statistics, spectra, dominant frequencies and their
associated damping characteristics. The ARMA method developed by Mignolet and
Red-Horse [15] has been shown to be appropriate and has been successfully applied to
perform spectral analysis of time series in experimental and numerical studies of
#ow-induced vibration of a single beam [20}23]. This same technique is used to analyze the
time series if they are stationary. For non-stationary signals, the STFT method [16] is used
to identify possible time-variant character.

The STFT method is essentially a windowed Fourier transform technique de"ned as

STFT(t,�)"� s ()�*�	� () d"� s () �* (!t) e
���d, (10)

where s is the signal and �* is called the window function. Similar to the frequency spectrum,
the STFT spectrogram is de"ned as

SP (t,�)"�STFT(t, �) ��. (11)

In order to analyze the time-variant behavior of the signal, the window function must be
chosen so that one can get both local time and frequency characters. Usually the Gaussian
function is used, expressed here as

�* (t)"�
�
��

���
e(!�/2) t� (12)

where � is a coe$cient which determines the degree of localization. The STFT spectrogram,
as de"ned in equation (11), is a function of both frequency and time, thus re#ecting time
variation of the frequency spectrum of the non-stationary signal.

3. RESULTS AND DISCUSSION

Free vibrations of two elastic circular beams in a cross #ow at Re"800 are simulated.
For ease of identi"cation, the beam on top is denoted as beam 1, while the other is
designated as beam 2. Subscripts 1, 2, etc. will also be used to identify vibration modes.
Their use will not confuse, but rather is self-explanatory based on the variable considered.
The two beams are identical, of "nite length, and "xed at both ends. The "rst four natural
frequencies of the two beams and their geometric dimensions are listed in Table 1. Here, the
dimensional natural frequency is denoted by f *

��
, while the dimensionless natural frequency

is designated by f
��
, where i"1, 2, 3, etc. is used to indicate the vibration mode. Only the

structural damping ratio, 

	
, is reported because there is no other damping in the system

when the beams are exposed to still air.
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The vibrations of the beams at three pitch ratios, ¹/D"1)13, 1)70, and 3)0, are studied in
the numerical simulation. These are three representative ¹/D values for the regime of
a single vortex street, the regime of biased #ow, and the regime of two coupled-
vortex-streets, respectively, for two side-by-side beams. This choice is motivated by the
desire to understand how free vibration of the beams a!ect the wake #ow and, in turn, the
beam dynamics. In this kind of arrangement, the free vibration of the beams will give rise to
two interaction e!ects, #uid}beam and beam}beam interaction. The objective of the present
study attempts to assess the e!ect of these two di!erent types of interaction. The statistics of
the #uid forces and beam displacements at mid-span are also calculated in order to compare
with experimental measurement [8] and numerical results obtained from a 2-d.o.f.
modelling of the same problem [14]. In addition, the vibration modes and possible
correlation along the span of the beams are examined in order to seek understanding of the
#uid}beam and beam}beam interaction e!ects.

3.1. THE ¹/D"3)0 CASE

For this ¹/D, the two vortex streets are coupled. Whether this will give rise to
non-stationary behavior in the wake remains to be seen. The calculated time series of the
force coe$cients and beam displacements are plotted in Figure 2. In these and other
subsequent plots, the ordinate is the normalized time, t. These time series are very similar to
those calculated for a single beam [13], and they appear to approach a stationary behavior
after a "nite time. This means that the time series can be "rst analyzed assuming them to be
stationary and then further examined for time-variant behavior.

Data analysis is carried out over a "nite period of the stationary time series. Firstly, the
statistics are calculated and listed in Table 2 for comparison with available experimental
measurements and numerical results obtained from a 2-d.o.f. model. Only the statistics of
the force coe$cients, C

�
and C

�
, and those of the displacements, X and >, are shown. As

before, the subscripts 1 and 2 are used to denote the location of the beams, 1 on top and
2 below. Measurements of CM

�
and CM

�
for both beams and > for beam 1 have been reported

at the mid-span of the beams. Comparisons are made with these measurements. For this
case, CM

�
should be close to zero. Both numerical models yield results that are very close to

zero, but the measurements give a "nite, though small value. The calculations indicate that
the beams are repulsive but the measurements show that they move in unison. However, the
physics seems to support the calculations. The calculated CM

�
is in approximate agreement

with the numerical and experimental data; the present result being the largest while the
measurement is the smallest. This is true for both beams because, at this ¹/D, the drag is the
same for both. The calculated >	

�
is three plus times larger than the experimental

measurement, but is only about 15% larger than the result obtained from a 2-d.o.f. model.
The discrepancy between the numerical results is due to the fact that a 2-d.o.f. model cannot
account for the contribution of the higher modes. The discrepancy between measurement
and calculation is a direct consequence of the disagreement noted in CM

�
.

Secondly, a correlation analysis is carried out. The correlation coe$cient, � (P, Q), is
calculated to study the phase relation between C

�
, C

�
and >, X of the two beams. The

correlation coe$cient is de"ned as

� (P,Q)"E[(P!�
�
)]E[(Q!�

�
)]/(�

�
�
�
), (13)

where P and Q are the time series of two signals, � is the mean and � is the standard
deviation of the signal. In the lift direction, the correlation coe$cients of C

�
and > for the

two beams are identical and equal to !0)9998. This suggests thatC
�
and> be out of phase.
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In the streamwise direction, the correlation coe$cients of C
�
andX between the two beams

are 0)9964 and 0)9972, respectively, thus suggesting an in-phase relation between the two
beams. This is consistent with previous experimental result [8].

For this ¹/D, the #uid force and beam displacement time series are approximately
sinusoidal. First, the ARMA technique is used to analyze them. The calculated frequency
spectra ofC

�
andC

�
for both beams are shown in Figure 3. From this point on, the ordinate

of all spectral plots is the dimensionless frequency, f. The two beams have almost the same
frequency spectrum. There is only one dominant vortex shedding frequency in the spectra of
C

�
and it is occurring at approximately f " 0.21 for both beams (Figure 3(a)). This also is

the Strouhal number. For the spectra of C
�
, there are two dominant frequencies, one

occurring at f"0)21 and another at f"0)42 (Figure 3(b)). The latter is the dominant
frequency of the #uctuating drag and is exactly double that of the vortex shedding
frequency.

In order to ascertain that the time series are indeed stationary, a STFT analysis is carried
out at several selected time locations within one period of time evolution of the #uctuating
lift force as shown in Figure 4(a). The calculated spectrograms are shown in Figure 4(b). It is
seen that the frequency spectrum essentially does not change with time, suggesting that the
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Comparison of numerical calculations with experimental measurements for the case, ¹/D"3)0
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Figure 3. The spectra of #uid forces for the ¹/D"3)0 case deduced using ARMA: (a) C
�
; (b) C

�
;**, beam 1;

- - - - - -, beam 2.

VORTEX-INDUCED VIBRATIONS OF TWO SIDE-BY-SIDE BEAMS 685
time evolution of the #uctuating lift is a stationary process. In Figure 5(a) is plotted
a comparison of the STFT and ARMA results. It can be seen that the STFT analysis
identi"es higher harmonics at both odd and even orders, which are not very obvious in the
ARMA spectrum. This feature is di!erent from that observed in a freely vibrating single
beam. The STFT and ARMA results of a single beam at Re"994 are also plotted in
Figure 5(b) for comparison. Higher harmonics only occur at odd orders in the case of
a single beam. Thus, it can be seen that beam}beam interaction gives rise to the higher
harmonics at even orders for this ¹/D.

The next step is to examine the X and > time series to see if the same behavior as the
C

�
and C

�
time series is observed. The frequency spectra of X and > obtained using the
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Figure 5. STFT and ARMA spectrum of C
�
for: (a) beam 1 of the ¹/D"3)0 case, (b) single beam;**, STFT

spectrogram; - - - - - -, ARMA spectrum.
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ARMA method are plotted in Figure 6. These spectra show that the two beams are
responding to the #uid forces at the dominant excitation frequency, i.e., f"0)21. The
time-variant spectrograms are given in Figure 7, showing that the X and > time series are
also stationary. A comparison of the STFT and ARMA results is given in Figure 8. It can be
seen that higher harmonics occur at both odd and even orders, just like the force signals.

3.2. THE ¹/D"1)13 CASE

At this ¹/D, the beam wakes merge to form a single vortex street [1}4]. The calculated
C

�
, C

�
, > andX time series are shown in Figure 9. Similar to the ¹/D"3)0 case, where the

two vortex streets are coupled, it is noticed that the time series again approach stationary
behavior after a "nite time and appear to be periodic although not sinusoidal. Again, a set of
data is chosen from the stationary part of the calculated time series for analysis. The
statistics thus obtained are listed in Table 3 for comparison with experimental measurement
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Figure 6. The ARMA calculated spectra of beam displacements for the ¹/D"3)0 case: (a) >; (b)X;**, beam
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TABLE 3

Comparison of numerical calculations with experimental measurements for the case,
¹/D"1)13

Present result
Numerical result from
2-d.o.f. model [14]

Experimental
measurements [8]

CM
��

0)6654 0)65 0)52
CM

��
!0)6726 !0)67 !0)48

C	
��

0)7820 * *

C	
��

0)7824 * *

CM
��

1)9878 1)93 1)10
CM

��
1)9766 1)93 0)95

C	
��

0)3184 * *

C	
��

0)3155 * *

>M
�

2)7375�10
� * *

>M
�

!2)7643�10
� * *

>	
�

5)4036�10
� 2)0�10
� 2)3�10
�
>	

�
5)3939�10
� * *

XM
�

8)1739�10
� * *

XM
�

8)1466�10
� * *

X	
�

2)6586�10
� * *

X	
�

2)6977�10
� * *
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and the numerical result of a 2-d.o.f. structural model. The calculated CM
�
is the same for

both beams, in agreement with the 2-d.o.f. results and approximately with measurements.
As for CM

�
, a repulsive behavior is predicted, and this trend is in agreement with experiments

and the 2-d.o.f. results. The predictions are in quantitative agreement with the 2-d.o.f.
calculations and agree much better with measurements, contrary to the ¹/D"3)0 case. The
prediction of >	

�
is still larger than the other two sets of data, but not as much as in the

¹/D"3)0 case. For this ¹/D, CM
�

is non-zero; this non-zero mean-value suggests an
asymmetric pressure distribution about the x-axis, as observed in the experiment [8].

The correlation coe$cient of C
�
between the two beams is �"0)5183. This suggests

a phase di!erence of 0.33� for the #uid forces of the two beams. The correlation coe$cient
of> between the two beams is �"!0)2156, and the phase di!erence is 0)57�. This is quite
di!erent from that deduced from C

�
and can be attributed to the di!erence in response of

the beams. It should be noted that the phase di!erence between C
�
when the two beams are

static is 0)34� (�"0)4783), that is, beam vibration does not alter the phase relationship
between the #uctuating forces acting on the two beams. The di!erence between the
correlation coe$cients of C

�
and > can be due to the presentation of the response at the

natural frequency of the beam. A calculation of the correlation coe$cient between C
�
and

> shows that the phase di!erence is around 0)17�. This suggests that the beam is responding
to the excitation force at di!erent frequencies. The behavior will be made clearer when the
frequency spectra of C

�
and > are examined later.

The frequency spectra of C
�
and C

�
calculated using the ARMA method are plotted in

Figure 10. It is seen that there are two Strouhal numbers, one is 0)12 and another is 0)25.
This has been reported previously for a pitch ratio around 1)25 [3, 4]. While the Strouhal
number of 0)25 can be considered similar to that found in a single beam, So et al. [23] has
shown that the additional Strouhal number 0)12 is due to the e!ect of gap #ow. It is also
seen that an even order higher harmonics at f"0)49 is quite prominent. The STFT
spectrogram shown in Figure 11 clearly demonstrates that higher harmonics occur at even
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Figure 12. The STFT spectral analysis ofC
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for the ¹/D"1)13 case: (a) illustration of the time points at which
the STFT analysis is carried out; (b) STFT spectrograms.
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orders. This is di!erent from the case of a single beam and the case of two beams at
¹/D"3)0. The STFT spectrograms at several selected time locations within one period of
time evolution of the #uid force are plotted in Figure 12. It is found that although the main
feature of the frequency spectrum does not change with time, it is not di$cult to observe its
variation in form with time. This indicates that the time evolution of the #uctuating forces is
a slightly non-stationary process. This time variation is clearly shown in the STFT analysis
of the beam displacements.

The frequency spectra of > and X calculated using the ARMA method are shown in
Figure 13. Apart from the response at the frequencies of f"0)12, 0)25, and 0)50, it can be
seen that a response peak also occurs at f"0)36. This peak can be attributed to the "rst
mode of vibration of the two beams whose natural frequency in still air is 0)30. Compared
with the frequency spectra of C

�
and C

�
, the response at f"0)25 is higher while that at

f"0)50 is lower. This may contribute to the phase di!erence between beam vibration and
the #uctuating force. The response at the "rst natural frequency of the beam can be clearly
seen in the STFT spectrogram comparison with the corresponding ARMA result for



0.0 0.2 0.4 0.6 0.8 1.0
10

−4

10
−1

10
2

f

0.0 0.2 0.4 0.6 0.8 1.0
10

−4

10
−1

10
2

f

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it
y

P
o
w

e
r 

S
p
e
c
tr

u
m

 D
e
n
s
it
y

(a) (b)

Figure 13. The ARMA calculated spectra of beam displacements for the ¹/D"1)13 case: (a) >, (b) X; **,
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>1 (Figure 14). The STFT spectrograms at several selected time locations within one period
of time evolution of > are plotted in Figure 15. It can be seen that the response at the "rst
natural frequency, f"0)36, shows obvious variation with time, hence, the slightly
non-stationary behavior of the #uctuating forces and beam responses.

3.3. THE ¹/D"1)7 CASE

For two side-by-side rigid beams in a cross #ow, a biased #ow pattern exists in the wake
for the ¹/D"1)7 case. The same has also been observed in the two elastic beams
experiment [8]. This gives rise to non-stationary time series for the forces and the beam
displacements. In order to demonstrate that this is indeed the case, the calculated time series
of the #uctuating forces and beam displacements for the ¹/D"1)7 case is plotted in
Figure 16. They are quite di!erent from those presented in the ¹/D"1)13 and 3)0 cases,
where a single vortex street and two coupled vortex streets are observed respectively. The time
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Figure 15. The STFT spectral analysis of >1 for the ¹/D"1)13 case: (a) illustration of the time points at which
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TABLE 4

Comparison of numerical calculations with experimental measurements for the case, ¹/D"1)7

Present result
Numerical result from
2-d.o.f. model [14]

Experimental
measurements [8]

CM
��

0.26}0.38 0.30 0.37
C	

��
0.38}0.74 * *

>M
�

0.9}1.6 (�10
�) * *

>	
�

7.3}11.1(�10
�) 10)5�10
� 4.0�10
�
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series do not approach a stationary state and are not periodic. Therefore, it is expected that
the statistics and the correlation are time variant, and the ARMA method is inadequate for
this set of data. In view of this, the STFT method is used to carry out the spectral analysis,
while the ARMA method is applied to the complete time series to give an overall frequency
spectrum. The statistics are calculated and the correlation analysis is carried out on
a time-variant basis, i.e., the non-stationary nature of the signals is taken into account.
Statistics thus obtained, expressed in the form of a range to represent such a time-variant
nature, are listed in Table 4 for comparison with experimental measurements and
numerical results of the 2-d.o.f. structural model. The prediction of lift coe$cients is good,
but the calculated transverse displacement is larger than the experimental result. Noting
that the numerical approach using a 2-d.o.f. structural model gives similar results, this
suggests that the present approach needs further improvements in the modelling of #uid
#ow.

The time-variant STFT spectrograms of C
�
and > for beam 1 are shown in Figure 17. In

order to demonstrate the time variation of the frequency content, a series of 2-D plots at
di!erent t are given instead of a comprehensive 3-D plot.

At t"20, there is only one dominant frequency at f"0)23 for C
�
. This behavior is

similar to that found in the case of two coupled-vortex-streets, but the dominant frequency
is slightly higher. There is also a small peak at f"0)72, approximately three times that given
by f"0)23, and no even order harmonics are observed. For the corresponding>, two peaks
at f"0)23 and 0)30 can be identi"ed, the former corresponding to the excitation frequency
while the latter to the "rst natural frequency of the beam.

When the #ow further develops, the time evolution ofC
�
becomes unstable. At t"40, the

dominant frequency of C
�
has shifted to f"0)20, and two peaks appear, one at f"0)10 and

another at f"0)28, although they are not quite as discernible. Higher order harmonics are
observed. As for >, the dominant frequency occurs at f"0)31 which is the "rst natural
frequency of the beam, and there are two smaller peaks occurring at f"0)10 and 0)22,
corresponding to the excitation frequencies. At t"60, the frequency at f"0)20 disappears
and two dominant frequencies at f"0)13 and 0)25 begin to show in the C

�
spectrogram. In

the > spectrogram, the dominant frequency still occurs at f"0)30, while there is a smaller
peak at f"0)14.

The frequency content then shifts back to the behavior with one dominant frequency at
f"0)21, as shown in the spectrograms of C

�
at t"80 and 100. At t"120, three dominant

frequencies appear at f"0)16, 0)21, and 0)30. This behavior is very much like that observed
at t"40. As time increases to t"140, the frequency peak at f"0)30 disappears and there
remains two dominant frequencies at f"0)11 and 0)22. The dominant frequency of > also
occurs at f"0)22. The two frequency peaks in C

�
shift to f"0)14 and 0)24 at t"160, and

the corresponding > spectrogram shows two dominant frequencies at f"0)24 and 0.31. At
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t"180, two dominant frequencies can still be found in the C
�
spectrogram, but they occur

at f"0)21 and 0)31, and the > spectrogram also show peaks at these two frequencies. As
time increases further to t"200, the frequency at f"0)31 disappears and the peak at
f"0)21 slightly shifts to 0)23. Thus, the frequency content of the spectrum at this moment is
almost the same as that at t"20. At t"220, the dominant frequency remains at f"0)21,
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Figure 17. Continued
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but a small peak at f"0)33 begins to appear. As t increases to 240, the peak at f"0)33
becomes dominant and shifts to f"0)31, perhaps due to the e!ect of beam vibration, and
the frequency at f"0)21 is reduced though still discernible at f"0)20. There is only one
frequency peak at f"0)30 for > though. The behavior at t"260 shifts back to that at
t"200, with only one dominant frequency at f"0)20. However, this frequency shifts to
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f"0)26 at t"280, and then changes back to a behavior with three dominant frequencies at
f"0)12, 0)20, and 0)29 as time increases to t"300.

Through the above STFT analysis, it is seen that there are three types of time-variant
frequency spectrum forC

�
, that is, those with one, two, or three dominant frequencies. They

can be labelled as Types A, B, and C, respectively, for convenience of discussion. For Type
A, the single dominant frequency occurs at around f"0)20. For Type C, the three dominant
frequencies can be found around f"0)1, 0)2 and 0)3. As for Type B, the two dominant
frequencies occur at about f"0)1 and 0)2, or 0)2, and 0)3. This can be further classi"ed as
Types B1 and B2, respectively, depending on where the dominant frequencies are found.
These three types of frequency spectrum change intermittently in a random way. It is
interesting to note that a feature of three Strouhal numbers in the biased #ow pattern
regime has been reported in the literature [3, 5]. The present analysis suggests that such
a feature is just one of the behavior of the non-stationary time series.

The ARMA calculated spectra of C
�
and > are plotted in Figure 18 for comparison with

the STFT spectrograms. For C
�
, one dominant frequency occurring at f"0)23 can be

observed. Further analysis of the ARMA result shows there are two additional frequency
peaks at f"0)15 and 0)32, although they are not discernible in the spectral plot. This is
consistent with the feature of multiple Strouhal numbers reported in the literature.



0.0 0.2 0.4 0.6 0.8 1.0
10

−3

10
−2

10
−1

10
0

10
1

f

0.0 0.2 0.4 0.6 0.8 1.0

f

P
o

w
e

r 
S

p
e

c
tr

u
m

 D
e

n
s
it
y

10
−3

10
−2

10
−1

10
0

10
1

P
o

w
e

r 
S

p
e

c
tr

u
m

 D
e

n
s
it
y

(a) (b)

Figure 18. The ARMA deduced spectra for the ¹/D"1)7 case: (a) C
�
; (b) >, **, beam 1; - - - - - -, beam 2.
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Figure 19. The time-dependent statistics of beam 1 for the ¹/D"1)7 case: (a) C
�
; (b) >; �**�, mean value;

�**�, r.m.s. value.
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However, the present STFT analysis gives further insight about this feature as discussed
above. As for the ARMA calculated spectrum of >, the dominant frequencies occur at
f"0)23 and 0)31. The response at the fundamental natural frequency is consistent with the
STFT result, but the ARMA analysis cannot show the time variation of the response at the
excitation frequency (frequencies).

In the STFT analysis, the complete data set is divided into a number of sections. The
statistics ofC

�
and> are calculated using these sections of data. The time-variant results are

plotted in Figure 19. A comparison of the present result with experimental measurement
and the numerical result from the 2-d.o.f. model is given in Table 4. It can be seen that
CM

��
agrees well with experimental measurement and the numerical result obtained from

a 2-d.o.f. model. Also, >	
�
agrees with the 2-d.o.f. numerical result, but is higher than the

experimental measurement. These comparisons point to the danger of approximating the
beam dynamics by a spring}damper}mass system without fully understanding the physics
of the problem.
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The variation of the correlation coe$cient � (C
��

,C
��
) with time is plotted in

Figure 20(a). All coe$cients are negative, suggesting that the phase di!erence is between �/2
and 3�/2. Except at t"20, � (C

��
,C

��
) is randomly distributed in the range !0)1 and

!0)6, that is, the phase di!erence between 0)54� and 0)70�. The variation of the correlation
coe$cient � (>

�
,>

�
) is plotted in Figure 20(b). They are also negative, but the value lies in

the range !0)5 and !0)9, hence the phase di!erence is between 0)67� and 0)86�.

4. CONCLUSIONS

Numerical simulation is used to study the free vibration of two side-by-side elastic beams
in a cross #ow at Re"800. In the numerical approach, the Navier}Stokes and the
Euler}Bernoulli beam equations are used to model the complicated #uid}beam interaction
problem. The "nite element method combined with the modal analysis method is used to
treat the equations. A time-marching technique is used to solve the resultant equations.
Mesh remapping and iteration at every time step are invoked in order to resolve #uid}beam
and beam}beam interactions in real time. The vibration of two beams at ¹/D"1)13, 1)7,
and 3)0 is simulated. These ¹/D ratios represent three di!erent #ow regimes for the
side-by-side con"guration. The short-time Fourier transform (STFT) method is used to
analyze the time series, particularly for the biased #ow regime occurring at ¹/D"1)7,
where the conventional ARMA method is not applicable to the analysis of non-stationary
time series.

The present results are compared with experimental measurements and another set of
numerical results obtained from a 2-d.o.f. structural model. The agreement is good for some
results, but only qualitatively for others. By comparing the present predictions with those
obtained using a 2-d.o.f. structural model, it appears that the modelling of #uid #ow in the
present time-marching approach needs further improvements. The phase relationship
between #uid forces and their corresponding vibration amplitudes of the two beams are also
studied. For the regime of a single vortex street (¹/D"1)13), an in-phase relation is
observed. As for the regime of two coupled vortex streets (¹/D"3)0), an out-of-phase
relation is found. For the regime of biased #ow (¹/D"1)70), the phase di!erence varies
with time, but falls into a certain range, between 0)54� and 0)70� for C

�
, and between 0)68�

and 0)86� for >.
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The STFT analysis shows that the vibration behavior at ¹/D"1)13 and 3)0 is stationary,
while the vibration characteristics at ¹/D"1)7 is non-stationary. For the ¹/D"1)13 and
3)0 cases, the STFT results are consistent with the ARMA results. However, the STFT
results clearly show the existence of even order harmonics in the spectra. For the ¹/D"1)7
case, the STFT analysis reveals that three types of frequency spectrum exist in the time
series of C

�
or>. These spectra intermittently change with time in a randomway. This gives

a new interpretation to the behavior in the biased #ow regime. For this case, the STFT
method is more suitable for the non-stationary time series deduced from the study of
vortex-induced vibration.
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